11 research outputs found

    Cortical depth dependent functional responses in humans at 7T: improved specificity with 3D GRASE

    Get PDF
    Ultra high fields (7T and above) allow functional imaging with high contrast-to-noise ratios and improved spatial resolution. This, along with improved hardware and imaging techniques, allow investigating columnar and laminar functional responses. Using gradient-echo (GE) (T2* weighted) based sequences, layer specific responses have been recorded from human (and animal) primary visual areas. However, their increased sensitivity to large surface veins potentially clouds detecting and interpreting layer specific responses. Conversely, spin-echo (SE) (T2 weighted) sequences are less sensitive to large veins and have been used to map cortical columns in humans. T2 weighted 3D GRASE with inner volume selection provides high isotropic resolution over extended volumes, overcoming some of the many technical limitations of conventional 2D SE-EPI, whereby making layer specific investigations feasible. Further, the demonstration of columnar level specificity with 3D GRASE, despite contributions from both stimulated echoes and conventional T2 contrast, has made it an attractive alternative over 2D SE-EPI. Here, we assess the spatial specificity of cortical depth dependent 3D GRASE functional responses in human V1 and hMT by comparing it to GE responses. In doing so we demonstrate that 3D GRASE is less sensitive to contributions from large veins in superficial layers, while showing increased specificity (functional tuning) throughout the cortex compared to GE

    Grey-matter abnormalities in clinical high-risk participants for psychosis

    Get PDF
    The current study examined the presence of abnormalities in cortical grey-matter (GM) in a sample of clinical high-risk (CHR) participants and examined relationships with psychosocial functioning and neurocognition. CHR-participants (n = 114), participants who did not fulfil CHR-criteria (CHR-negative) (n = 39) as well as a group of healthy controls (HC) (n = 49) were recruited. CHR-status was assessed using the Comprehensive Assessment of At-Risk Mental State (CAARMS) and the Schizophrenia Proneness Interview, Adult Version (SPI-A). The Brief Assessment of Cognition in Schizophrenia Battery (BACS) as well as tests for emotion recognition, working memory and attention were administered. In addition, role and social functioning as well as premorbid adjustment were assessed. No significant differences in GM-thickness and intensity were observed in CHR-participants compared to CHR-negative and HC. Circumscribed abnormalities in GM-intensity were found in the visual and frontal cortex of CHR-participants. Moreover, small-to-moderate correlations were observed between GM-intensity and neuropsychological deficits in the CHR-group. The current data suggest that CHR-participants may not show comprehensive abnormalities in GM. We discuss the implications of these findings for the pathophysiological theories of early stage-psychosis as well as methodological issues and the impact of different recruitment strategies

    Ankle joint pressure changes in a pes cavovarus model after lateralizing calcaneal osteotomies

    No full text
    Tendon transfers and calcaneal osteotomies are commonly used to treat symptoms related to medial ankle arthrosis in fixed pes cavovarus. However, the relative effect of these osteotomies in terms of lateralizing the ground contact point of the hindfoot and redistributing ankle joint contact stresses are unknown
    corecore